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Abstract  

In a ubiquitous sensory world, different types of services can 

be provided by robots regardless of where people are located 

because robots can provide them wherever they are moved to. 

Robots need to acquire reliable motion primitives like walking 

and object grasping so that they can perform a variety of 

useful tasks. It takes a long time to acquire movement 

primitives in a ubiquitous sensory world. The idea of machines 

picking up movement basics and engaging with people in 

computer simulations has been explored in a number of earlier 

works. One drawback is that there is no way to define motion 

primitives that a robot cannot perceive because of how it 

learns them. In this article, we craft a new method for learning 

interactions in simulated settings. To describe the motion 

primitives, we use demonstration-based learning to physically 

manipulate a robot. In addition, Q-learning can be used by a 

computer to pick up on social cues from people. The motor 

primitives were produced naturally in one trial using the 

suggested technique, and using them decreased the quantity of 

movement needed for a simulated person by about 25%. 

Introduction  

Robots can actively provide a wide range of 

services in ubiquitous sensory settings. After 

approaching humans and gathering knowledge 

about their routines, machines can provide services 

regardless of where people are located [1]. 

However, after a computer learns how to 

communicate with a person, the following issues 

may arise. In the first place, there are issues with 

learning time during interaction learning because a 

computer can't pick up on human behaviors very 

quickly. As a result, it's important to gain 

experience interacting with people without actually 

interacting with them. Second, because robots have 

limited perceptual capabilities, they pose a danger 

to humans if they engage with one another. 

Therefore, people need to have access to safety 

gear. Previous research has examined human-

human contact learning in virtual settings, which 

can address the aforementioned issues [2-4]. Motor 

primitives for a virtual robot can be generated 

through demonstration-based learning and 

observation of a virtual person in virtual settings.  

However, it is impossible to generate motion 

primitives that cannot be observed. Furthermore, 

the motor primitives of robots may vary from the 

motions of people, and it may not be feasible to 

execute the motor primitives produced for a robot 

due to these aesthetic variations. Therefore, 

advances must be made in the techniques used to 

create various motor primitives. Learning how to 

teach a robot movement primitive while 

simultaneously teaching it to communicate with 

people in a simulated world is an area that needs 

more investigation. In this article, we suggest a 

ubiquitous learning environment for learning 

interactions, wherein movement primitives are 

learned via example and executed via Q-learning.  

The motor primitives are specified in the course of 

example learning techniques, making it possible for 

non-programmers to create motor primitives 

naturally. Using Q-learning, the freshly produced 

motor primitives can be executed without requiring 

any changes to the methods. 

Connected Tasks In order for machines to 

communicate with people, many different kinds of 

learning systems are needed. This part provides a 

brief overview of the literature on the topics of 

motor-primitive learning and virtual-human 

contact. Robots can't do much of anything without 

mastering the foundational movement skills. 

Various motion primitives can lessen robots' 

repulsiveness. Several lines of investigation are 

currently underway to develop motion primitives 

for machines that look and feel more humanlike. A 

similar research, for instance, identified innate 

motor primitives for selecting the route of least 

resistance [5, 6]. These actions were generated by 

an evolutionary program. Motor primitives that did 

not optimize for the quickest route were eliminated 

through evolution, and new motor primitives were 

created in their place. Use of demonstration-based 

learning is another method [7-9]. Algorithms that 

learn from demonstrations memorize and then 

analyse a set of motion primitives [7, 10] one at a 

time. Another method entails learning motor 

primitives by breaking down a sequence of motions 

into smaller, more manageable chunks [8]. In 

addition, a method was suggested that creates 

motor primitives in the form of a tree hierarchy [9, 

11]. A robot performs the same motor primitive at 

the outset but various motor primitives in different 

stages, all within the same hierarchy structure. 

Planning algorithms are typically responsible for 
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creating the motor primitives [12]. Applying 

planning formulas, however, is not without risk. 

The produced motor primitives are used in the 

definition of planning methods. Changes to the 

motion primitives necessitate updates to the 

planning methods used to implement them. 

Humans can specify motion primitives through 

demonstration-based learning, which eliminates the 

need for scripting. However, planning systems 

don't benefit from this feature. Therefore, methods 

that can be used despite modifications to the 

motion primitives are needed. 

Human-robot interaction concept 

learned in a digital learning framework. 

 It takes a long time to acquire human relationships 

and the number of robot encounters is restricted in 

a ubiquitous sensory world. In order to maximize 

learning and thus enable high-quality 

implementation of muscle primitives, it is 

necessary to minimize the number of encounters. 

As can be seen in Figure 1, our method eliminates 

the need for encounters in real-world ubiquitous 

sensing settings by teaching them in a simulated 

setting. We describe a virtual person and a virtual 

robot as learning entities in a virtual ubiquitous 

sensory world. To work together, the simulated 

person behaves naturally and the virtual automaton 

uses motion primitives. By engaging with digital 

people, the computer can learn how to 

communicate with actual ones. The outcome of the 

learning process is then implemented in the 

physical automaton. In order to communicate with 

a real person, the actual robot uses movement 

primitives learned virtually. 

Table 1: Approaches used in different stages of 

interaction learning by robots 

 

 

Figure 1: Framework for interaction learning. 

Try Out Both Real and Virtual Setups  

Ambient sensing systems. A Nao stood in for an 

actual automaton in our exercise. As can be seen in 

Figure 4, we also constructed a scale replica of a 

home that would have been appropriate for the 

Nao. There was a kitchen, a living area, and a 

bedroom in the sample home. The Nao picked up 

knowledge from talking to actual people. The Nao's 

mission was to bring the things an actual person 

needs to them. The Nao made an initial approach to 

the item after identifying it. Then it picked up the 

item, walked over to the actual human, and handed 

the item over to the human. The items in Table 2 

were used in the tests. There were immovable 

items, and those that could be picked up, carried, 

and set down by a Nao or a person. Q-learning 

requires the state space to be specified in 

preparation. After capturing a photo with an omni 

camera mounted on the roof and splitting it into the 

grid shown in Figure 5, we used these values to 

represent the locations of the person and the 

automaton in this experiment. Each cell's breadth 

was determined by the Nao's girth. That's how we 

got to 50 individual cells. The person, the 

automaton, and the closest object's values were 

used to establish the boundaries of each condition. 

The simulated ubiquitous sensing environment 

used in this experiment was designed precisely like 

the actual pervasive sensing environment used in 

the experiment, as shown in Figure 6.  

Thus, the simulated ubiquitous sensory world was 

an exact replica of the physical one in terms of both 

organization and scale. No face-to-face 

communication with actual people is needed. Any 

time a person is engaged in the learning process, 

the learning time issue arises, making it difficult to 

shorten the learning process. Accelerating 

interactions between a virtual person and virtual 

computer can further decrease training time. This is 

due to the fact that unlike actual humans and 

robots, simulated humans and robots do not have to 

perform muscle primitives at the same pace. 

Human modelling, motion basic learning, 

collaborative learning, implementation, and 

collaborative phases are all part of our method to 

interaction learning. Only the methods employed in 

Table 1 below, namely muscle primal learning and 

cooperation learning, are proposed in this study. In 

the human modelling phase, humans direct a 

synthetic human to carry out present movement 

primitives in order to make it behave like a human. 

By studying the human control process, the 

simulated people are taught to perform movement 

primitives. To teach the simulated robots how to 

move, humans take direct charge during the motor 

primitive learning stage, after which the robots 

come up with their own motor primitives on their 

own. The simulated robot then uses the acquired 

movement primitives in a simulated human 
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interaction. Through this practice, the simulated 

computer acquires the skills necessary to assist 

people. The outcomes of motion primitive creation 

and interaction are then implemented in a physical 

robot that can engage in natural human contact. 

 

 

Figure 2: Model house as a pervasive sensing environment.  

Table 2: Objects used in the experiments. 

 

 

figure 3: Grid environment of the real pervasive sensing 

environmint used for interaction learning. sensing 

environment.  

Objects were also deployed in the same way as the 

real pervasive sensing environment. We utilized 

two virtual agents as a virtual human and a virtual 

robot. 

Interaction Learning Results 

 (a) Scenario where a virtual human life alone is as 

follows:  

(I) a virtual human sleep,  

(ii) the human wakes up on a bed,  

(iii) the human walks to a couch,  

(iv) the human sits on the couch for a while,  

(v) the human stands up on the couch, 

 

 

Figure 4: Four motor primitives produced for a robot. 

 (vi) the human walks to a newspaper,  

(vii) the human picks up the newspaper, and  

(viii) the human reads the newspaper.  

(b) Scenario where a virtual robot provides services 

is as follows:  

(I) a virtual human sleep,  

(ii) the human wakes up on a bed,  

(iii) the human walks to a couch,  

(iv) while the human sits on the couch:  

(1) a virtual robot walks to a newspaper, and  

(2) picks up the newspaper.  

(v) when the human stands up on the couch:  
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the robot walks to a virtual human, and  

(2) gives the newspaper.  

(vi) the human receives the newspaper, and 

 (vii) the human reads the newspaper. 

 Figure 5 shows the accumulated rewards according 

to the increase in the amount of interaction 

learning. After 14,000, 

 

figure 5: A virtual robot delivers a newspaper to a virtual 

human. 

The robot's ability to learn from experience 

increased. In the prior list (b), you can see how the 

simulated automaton modified the situation after 

learning from interactions. If a simulated person 

were to reside alone, it would pick up a copy of the 

newspaper on its own. If a simulated robot was 

present, however, the robot would take up the 

newspaper and deliver it to the synthetic person. 

Conclusion 

 In this paper, we developed an approach to virtual 

pervasive sensing environment-based interaction 

learning where the operators taught motor 

primitives to a real robot by Manipurlating its arms 

directly. The learned motor primitives were utilized 

by a virtual robot and executed to learn interactions 

with a human. The operators defined the motor 

primitives using manipulations, so various different 

types of motor primitives could be defined 

intuitively, which overcame the problems of 

previous approaches. The virtual human and the 

virtual robot used in our proposed method and 𝑄-

learning are suitable for single agentbased learning 

algorithms, so it is necessary to improve our 

proposed method by applying multi-agent-based 𝑄-

learning. A method is also required to allow a 

virtual robot to provide services to multiple virtual 

humans. Finally, an approach will be developed to 

facilitate the application of the learned interaction 

results to a real robot. 
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